中考数学解答题满分策略 -米乐网页
解答题就是给出一定的题设条件(即已知),然后提出一定的要求(即结论).它要求考生能根据题设,运用已知的一切条件(含公理、定理、性质、定义、公式等),通过推理和计算最终达到要求的目标.在卷面上要求考生必须要将整个过程有条理、合乎逻辑、完整地陈述出来(包含添加的辅助线、引用的结论等).一般中考数学试卷采用设点把关,注重层次性,即使是最后两题即所谓压轴题也不是高不可攀;试卷注重对基础知识的考查,既全面又突出重点;试卷注重对数学思想方法的考查,对学生的数学的学习能力、综合应用能力都有充分的要求.
解答题是需要写出解题过程的题型,在中考数学试题中占相当大的比重,考试的竞争也集中在解答题的得分率上。时间很紧张,不允许做大量细致的解后检验,所以要尽量准确运算(关键步骤,力求准确,宁慢勿快),立足一次成功.解题速度是建立在解题准确度基础上的,更何况数学题的中间数据常常不但从“数量”上,而且从“性质”上影响着后继各步的解答.所以,在以快为上的前提下,要稳扎稳打,层层有据,步步准确,不能为追求速度而丢掉准确度,甚至丢掉重要的得分步骤.
一、解答题的基本特点
素质教育是当代教育发展的总趋势也是我国教育发展的方向所在。从另一个层面来说 当代教育也给我们教育工作提出了新的要求 即要讲究实效提高效率减轻学生的课业负担大面积提高教学质量。新的《课程标准》颁布的数学新课程标准要求教师要“通过研究性、探究性的学习培养学生具有创新能力、实践能力和终生学习的能力”。突出强调 “在教学中应当引导学生在学好概念的基础上掌握数学的规律(包括法则、性质、公式、公理、定理、数学思想和方法)。”基于以上思想纵观近年各省市中考形势。具有选拔功能的中考数学压轴题是为考察考生综合运用知识的能力而设计的题目,其特点是知识点多,覆盖面广,条件隐蔽,关系复杂,思路难觅,解法灵活。解数学压轴题,一要树立必胜的信心,二要具备扎实的基础知识和熟练的基本技能,三要掌握常用的解题策略。
分析近几年全国各地的中考试题,对照每年的《中考说明》要求,均注意到了对重要知识点的考查。如:在每年的第一类解答题中,必考的内容有实数的运算、代数式的化简求值、解不等式组、解方程或方程组、一元二次方程根的判别式或根与系数的关系、概率统计等;在每年的第二类解答题中,列方程解应用题、解直角三角形、求函数解析式、平面图形的简单论证和计算等是考查的重点;在每年的第三类解答题中,则是中考稳中求变的突破口,将基础性、应用性、实践性、开放性、探究性融入其中。但总体来说,还是有规律可以捕捉的,如圆与三角形、圆与四边形中等积式和比例式的证明,几何与方程、函数的结合题,几何图形中的一些条件给定、探求结果的开放型题等都是近几年来保留的压轴题。
数学来源于生活,同时也必将应用于生活,学数学就是为了解决生活中所碰到的实际问题。近几年的中考题相当注重运用数学知识解决实际问题的考查,考查层次非常丰富,不解答题与填空题比较,同属提供型的试题,但也有本质的区别。首先,解答题应答时,考生不仅要提供出最后的结论,还得写出或说出解答过程的主要步骤,提供合理、合法的说明。填空题则无此要求,只要填写结果,省略过程,而且所填结果应力求简练、概括和准确。其次,试题内涵,解答题比起填空题要丰富得多。解答题的考点相对较多,综合性强,难度较高。解答题成绩的评定不仅看最后的结论,还要看其推演和论证过程,分情况评定分数,用以反映其差别,因而解答题命题的自由度,较之填空题大得多。
不少计算题的失误,都是因为打草稿时太潦草,匆忙抄到试卷上时又看错了,这样的毛病难以在考试时发现。正确的做法是:在试卷上列出详细的步骤,不要跳步。只有少量数学运算才用草稿。事实证明:踏实地完成每步运算,解题速度就快;把每个会做的题目做对,考分就高。
二、解答题的主要考查点
从知识点上看,在中考数学命题方向上,近几年没有太多的起伏;从内容上看,几何题中的面积、弧长、侧面积或圆中线段、角度计算或者与代数、相似三角形、三角函数的联系等,二次函数综合题仍是多数省市压轴题的首选内容,圆的内容也有所侧重,并且考试内容与考查方式的结合新颖。对这些知识点的考查并不放在对概念、性质的记忆上,而是对概念、性质的理解与运用上,通过现实生活来体验数学的妙趣。
解答题涉及的知识点多:次方、开方、三角函数、次幂(0次、-1次)计算;求解不等式组;分式、多项式化简(整体代入方法求值);方程组求解;几何图形中证明三角形边相等;一次函数与二次函数;四边形边长、周长、面积求解;圆相关问题(切割线、圆周角、圆心角);统计图;在数轴中求三角形面积;二次函数(解析式、直线方程);圆与直线关系;三角形角度相关计算。
1、实数代数式运算、方程不等式求解
(1)分式的化简与求值。分式的运算分式的个数不超过三个,所以中考试题多以三个或两个分式为主,考察分式的通分,整式的因式分解,分式的约分等。通常的解题程序是:先把分子与分母能分解因式的进行因式分解,同时把小括号内的分式通分合并;再把除法转化为乘法运算,最后准确约分即可。
求值时改变了直接给出未知数的具体数字的模式,通常给出未知数的取值范围,首先要根据分式成立的意义确定什么数不能取,进而选择可行数代入求值。
(2)实数的运算。实数混合运算加减运算的次数不超过四次,因此中考试题中加减号的次数多以三个或四个为主,考察内容包括根式的化简,绝对值运算,整数指数幂的运算,特殊角三角函数值等。
通常的解题程序是:按加减把混合运算分成四个或五个小运算,第一步中把每个小运算的结果求出,再去括号进行实数的加减运算可直接得结果。
(3)解方程、解不等式。解方程(组)与解不等式(组)主要以解一元二次不等式,解二元一次方程组和解一元一次不等式组为主,考察等式与不等式的基本性质和消元降次的思想.它们的解题程序课本中都有标准的过程。数学是研究事物的空间形式和数量关系的,最重要的数量关系是等量关系,其次是不等量关系。最常见的等量关系就是方程。比如等速运动中,路程、速度和时间三者之间就有一种等量关系,可以建立一个相关的等式:速度?时间=路程,在这样的等式中,一般会有已知量,也有未知量,像这样含有未知量的等式就是方程,而通过方程里的已知量求出未知量的过程就是解方程。我们在小学就已经接触过简易方程,而初一则比较系统地学习解一元一次方程,并总结出解一元一次方程的五个步骤。如果学会并掌握了这五个步骤,任何一元一次方程都能顺利地解出来。初二、初三我们还将学习解一元二次方程、二元二次方程组、分式方程,到了高中我们还将学习指数方程、对数方程、线性方程、参数方程、极坐标方程等。解这些方程的思维几乎一致,都是通过一定的方法将它们转化一元一次方程或是一元二次方程的形式,然后用大家熟悉的解一元一次方程的五个步骤或者解一元二次方程的求根公式加以解决。物理中的能量守恒,化学中的化学平衡式,现实中的大量实际运用,都需要建立方程,通过解方程来求出结果。因此同学们一定要将解一元一次方程和解一元二次方程学好,进而学好其它形式的方程。所谓的“议程”思维就是对于数学问题,特别是现实当中碰到的未知量和已知量的错综复杂的关系,善于用方程的观点去构建有关的方程,进而用解方程的方法去解决它。
2、线段、角的计算与证明问题。
3、全等三角形证明与特殊四边形的判断与证明以及相关基本计算
4、图形位置关系
中学数学当中,图形位置关系主要包括点、线、三角形、矩形/正方形以及圆这么几类图形之间的关系。在中考中会包含在函数,坐标系以及几何问题当中,但主要还是通过圆与其他图形的关系来考察,这其中最重要的就是圆与三角形的各种问题。
5、统计图表完善,样本估计总体状况计算问题。
6、动态几何。从历年中考来看,动态问题经常作为压轴题目出现,得分率也是最低的。动态问题一般分两类,一类是代数综合方面,在坐标系中有动点,动直线,一般是利用多种函数交叉求解。另一类就是几何综合题,在梯形,矩形,三角形中设立动点、线以及整体平移翻转,对考生的综合分析能力进行考察。所以说,动态问题是中考数学当中的重中之重,只有完全掌握,才有机会拼高分。
7、函数基本应用或基本技能问题。
8、一元二次方程与二次函数。
9、利用解直角三角形解决实际问题。
10、多种函数交叉综合问题。
11、列方程、不等式、函数关系式解决实际问题。
12、动态几何与函数问题。
13、探究性问题。探究性问题的特点是在一个基本的平面图形内存在动点或动线变化,进而研究在变化过程中图形的特征变化及其对应下某线段(或角)的大小变化情况(或反之)。
14、阅读理解问题。阅读理解往往是先给一个材料,或介绍一个超纲的知识,或给出针对某一种题目的解法,然后再给条件出题。对于这种题来说,如果考生为求快速而完全无视阅读材料而直接去做题的话,往往浪费大量时间也没有思路,得不偿失。所以如何读懂题以及如何利用题就成为了关键。
15、图象信息问题与表格信息问题。
16、函数图象、平面图形在直角坐标系下综合问题。
17、实验操作性问题。
三、中考数学解答题的解题方法
中考数学试卷一般25道题,平均每套题的解答时间不到5分钟。同学们最好把客观题(选择题和解答题)和主观题的时间分配比例控制在1:3左右,也就是说120分钟,客观题要在30分钟内完成,90分钟答主观题。
从考察能力上看,解答题着重考查学生数学思想的理解及运用。数学能力是学好数学的根本,主要表现为数学的思想方法。初中数学中最常见的思想方法有:分类、化归、数形结合、猜想与归纳等。其中,数形结合思想、方程与函数思想、分类讨论思想等几乎是近几年中考试卷考查的重点。在解答题的应试过程中,考生要根据自己的实际情况,选择适合自己的应试策略.
解解答题的基本宗旨是“稳扎稳打”。①中考数学计算能力提升正常发挥②十大中考数学解题模型掌握(线段、角的计算与证明模型;图形位置关系模型;动态几何模型;一元二次方程与二次函数模型;多种函数交叉综合模型;列方程(组)解应用题模型;动态几何与函数模型;几何图形的归纳模型、猜想;阅读理解模型)③六大数学思想方法应用能力(方程思想、数学建模思想、函数思想、转化思想、分类讨论法、数形结合法)④掌握九种常用数学解题方法(配方法、因式分解法、换元法、判别式法与韦达定理、待定系数法、构造法、反证法、面积法、几何变换法(平移;旋转;对称)的娴熟运用。
1、提升数学思想方法应用能力
数学思想方法是指对数学知识和方法形成的规律性的理性认识,是解决数学问题的根本策略。数学思想方法揭示概念、原理、规律的本质,是沟通基础知识与能力的桥梁,是数学知识的重要组成部分。数学思想方法是数学知识在更高层次上的抽象和概括,它蕴含于数学知识的发生、发展和应用的过程中。
(1)运用数形结合思想。数形结合思想主要是指将数(量)与(图)形结合起来进行分析、研究、解决问题的一种思维策略。由数思形、形思数、数形结合来解决具体数学问题。纵观近几年中考解答题,绝大部分都是与平面直角坐标系有关,其特点是通过建立点与数即坐标之间的对应关系,一方面可用代数方法研究几何图形的性质,另一方面又可借助几何直观,得到某些代数问题的解答。纵观最近几各地的中考压轴题,绝大部分都是与坐标系有关的,其特点是通过建立点与数即坐标之间的对应关系,一方面可用代数方法研究几何图形的性质,另一方面又可借助几何直观,得到某些代数问题的解答。
(2)运用函数与方程思想。
从分析问题的数量关系入手,适当设定未知数,把所研究的数学问题中已知量和未知量之间的数量关系,转化为方程或方程组的数学模型,从而使问题得到解决的思维方法,这就是方程思想。直线与抛物线是初中数学中的两类重要函数,即一次函数与二次函数所表示的图形。因此,无论是求其解析式还是研究其性质,都离不开函数与方程的思想。例如函数解析式的确定,往往需要根据已知条件列方程或方程组并解之而得。直线与抛物线是初中数学中的两类重要函数,即一次函数与二次函数所表示的图形。因此,无论是求其解析式还是研究其性质,都离不开函数与方程的思想。例如函数解析式的确定,往往需要根据已知条件列方程或方程组并解之而得。
(3)运用分类讨论的思想。分类讨论思想可用来检测学生思维的准确性与严密性,常常通过条件的多变性或结论的不确定性来进行考察,有些问题,如果不注意对各种情况分类讨论,就有可能造成错解或漏解,纵观近几的中考压轴题分类讨论思想解题已成为新的热点。在解答某些数学问题时,有时会遇到多种情况,需要对各种情况加以分类,并逐类求解,然后综合得解,这就是分类讨论法。它体现了化整为零、积零为整的思想与归类整理的方法。分类的原则:①分类中的每一部分是相互独立的; ②一次分类按一个标准;③分类讨论应逐级进行.正确的分类必须是周全的,既不重复、也不遗漏.
(4)运用转换思想。转化思想是解决数学问题的一种最基本的数学思想。在研究数学问题时,我们通常是将未知问题转化为已知的问题,将复杂转化为简单,将抽象转化为具体,将实际问题转化为数学问题。转化的内涵包括已知与未知、数量与图形、图形与图形之间都可以通过转化来获得解决问题的转机。
2、数学审题能力的培养与训练
审题是发现解法的前提。认真审题可以探索解法指明方向。审题就是弄清题意。题目是由条件和结论构成的。审清题目的已知事项解题的目标,审清题目的结构特征和判明题型。审清题目条件的具体要求是:罗列明显条件,挖掘隐含条件,把条件图表化,弄清已知条件的等价说法,把条件适合解题需要的转换。审清题目结论的具体要求是:罗列解题目标,分析多目标之间的层次关系,弄清解题目的等价说法,把解题目标图表化。
审清题目结构的具体要求是:判明题型,推敲题目的叙述可否作不同的理解,分析条件与结论的联系方法,观察图、数、式的结构特征,如果是用文字语言表示题目结构,设法改用图、式、符号来表示,使之直观化,想想在已知条件和目标之间有何逻辑联系?为了使学生养成认真审题的习惯,教师首先应强调审题的重要性,其次要作出审题的示范,还要在学生的作业中捕捉因不认真审题而导致解题错误的典型事例,进行讲解,吸取教训。
3、注重答题程序和规范的培养。(1)审题:这是解题的开始,也是解题的基础.一定要全面审视题目的所有条件和答题要求,以求正确、全面理解题意,在整体上把握试题的特点、结构,以利于解题方法的选择和解题步骤的设计.审题思考中,要把握“三性”,即明确目的性,提高准确性,注意隐含性.解题实践表明:条件暗示可知并启发解题手段,结论预告并诱导解题方向,只有细致地审题,才能从题目本身获得尽可能多的信息.这一步,不要怕慢,其实“慢”中有“快”,解题方向明确,解题手段合理得当,这是“快”的前提和保证.否则,欲速则不达.
(2)寻求合理的解题思路和方法:破除模式化、力求创新是近几年中考数学试题的显著特点,解答题体现得尤为突出,因此,切忌套用机械的模式寻求解题思路和方法,而应从各个不同的侧面、不同的角度,识别题目的条件和结论,认识条件和结论之间的关系、图形的几何特征与数、式的数量、结构特征的关系,谨慎地确定解题的思路和方法.当思维受阻时,要及时调整思路和方法,并重新审视题意,注意挖掘隐蔽的条件和内在联系,既要防止钻牛角尖,又要防止轻易放弃. 对一个问题正面思考发生思维受阻时,用逆向思维的方法去探求新的解题途径,往往能得到突破性的进展.顺向推有困难就逆推,直接证有困难就反证.如用分析法,从肯定结论或中间步骤入手,找充分条件;用反证法,从否定结论入手找必要条件.
4、注重答题策略。
(1)分段得分。近几年中考数学解答题有“入手容易,深入难”的特点,第一问较容易,第二、三问难度逐渐加大。因此,解答时应注意“分段得分”,步步为营。首先拿下第一问,确保不失分,然后分析第一问是否为第二、三问准备了思维基础和解题条件,力争第二问保全分,争取第三问能抢到分。数学中考中的解答题都是按步给分的,如果过程写得比较简单,一旦出现错误往往会丢较多的分,因此中间过程不要过于简单,这样即使出现错误也可以尽可能少扣分。如果因为时间过紧或只知道结果而不能正确书写过程,就将正确答案写上。一道题目的完整解答,既有主要的实质性的步骤,也有次要的辅助性的步骤。实质性的步骤未找到之前,找辅助性的步骤是明智之举。如:准确作图,把题目中的条件翻译成数学表达式,设应用题的未知数等。答卷中要做到稳扎稳打,字字有据,步步准确,尽量一次成功,提高成功率。
(2)缺步解答。如果遇到一个很困难的问题,确实啃不动,一个聪明的解题策略是,将它们分解为一系列的步骤,或者是一个个小问题,先解决问题的一部分,能解决多少就解决多少,能演算几步就写几步,尚未成功不等于失败。特别是那些解题层次明显的题目,或者是已经程序化了的方法,每一步得分点的演算都可以得分,最后结论虽然未得出,但分数却已过半,这叫“大题拿小分”。跳步答题:解题过程卡在某一过渡环节上是常见的。这时,我们可以先承认中间结论,往后推,看能否得到结论。如果不能,说明这个途径不对,立即改变方向;如果能得出预期结论,就回过头来,集中力量攻克这一“卡壳处”。由于考试时间的限制,“卡壳处”的攻克如果来不及了,就可以把前面的写下来,再写出“证实某步之后,继续有……”一直做到底。也许,后来中间步骤又想出来,这时不要乱七八糟插上去,可补在后面。若题目有两问,第一问想不出来,可把第一问作“已知”,先做第二问,这也是跳步解答。
5、书写规范。中考的突出特点是以卷面为唯一依据。这就要求不但会而且要对、对且全,全而规范。会而不对,令人惋惜;对而不全,得分不高;表述不规范、字迹不工整又是造成中考数学试卷非智力因素失分的一大方面。因为字迹潦草,会使阅卷老师的第一印象不良,进而使阅卷老师认为考生学习不认真、基本功不过硬、“感情分”也就相应低了,此所谓心理学上的“光环效应”。“书写要工整,卷面能得分”讲的也正是这个道理。
卷面书写即速度快,又要整洁、准确。要求考生填涂答题卡准确,字迹工整,大题步骤明晰。书写版面设计要合理,美观大方,关键步骤必须写上,按从上到下,从左到右的顺序书写。解答问题用钢笔或者签字笔,作图用铅笔。
《考试说明》中对选择填空题提出的要求是“正确、合理、迅速”,因此,解答的基本策略是:
快——运算要快,力戒小题大做;
稳——变形要稳,防止操之过急;
全——答案要全,避免对而不全;
活——解题要活,不要生搬硬套;
细——审题要细,不能粗心大意。
重视解题过程的语言表述,用准确完整的数学语言表述,要按照“审、设、列、解、答”的格式书写。避免出现“会而不对”“对而不全”、几何证明题中的“跳步”现象。答题要用钢笔、水笔或圆珠笔书写,字迹要整齐,端正;要根据题目要求和所给的条件,统一单位。
重视解题过程的语言表述,用准确完整的数学语言表述,要按照“审、设、列、解、答”的格式书写。避免出现“会而不对”“对而不全”、几何证明题中的“跳步”现象。答题要用钢笔、水笔或圆珠笔书写,字迹要整齐,端正;要根据题目要求和所给的条件,统一单位。
初中数学的学习,要循序渐进,由易入难。前面的知识不懂,后面的知识怎能学会?若想要一步登天则是不现实的。数学是环环相扣的一门学科,哪一个环节脱节都会影响整个学习的进程。所以,平时学习不要走过场,要一章一节过关,不要轻易留下自己不明不白或者理解不深刻的问题。 记忆。新学每一个概念、定理、公式等,都要理解熟记,学会应用。并且,尝试先不看答案,做一次习题,看是否能正确运用新知识;若不行,则对照答案再练,直到弄通弄懂为止。训练。学完例题后认真完成课本习题就非常重要。有人可能认为课本习题太简单不值得做,这种想法是不对的。能否起步稳、下笔准,一气呵成做好课后习题,不仅检测你是否掌握基础知识和具备解题能力,而且需要你将书写格式规范化,从而使自己的解题结构紧密而又严整。
学习数学是不能缺少训练的,平时多做一些难度适中的练习,当然不要陷入死钻难题的误区,要熟悉考试的题型,训练要做到有的放矢。只有先易后难,稳步推进,经历边学边练,才能使学习掌握的公式定律等能够运用得恰如其分,从而减少失误,减少以后考试时无谓的失分;从而提高学习效率,做到又准又快、简短清晰,不断提高解题能力。纠错。重视平时作业或考试时出现的错误。订一个错题本,专门搜集自己的错题,时刻检查自己的薄弱之处。复习时,这个错题本也就成了宝贵的复习资料,可以提醒自己,避免错误的再次出现。 对于个别的学生来说,学习数学的能力是与生俱来的,也就是我们所说的天赋。但对于绝大部分学生来说,数学能力的培养是需要“汗水 方法”才能成功,因而平时的勤奋学习和经验积累,成为提高数学解题能力的重要基础。
参考文献
[1] 初中数学中考复习策略.万群.科学咨询(教育科研)2020-12-09
[2] 《数学课程标准》.北京师范大学出版社
[3]中考数学高效复习策略研究.高雷.科学咨询(教育科研).2020-09-08 .
[4] 2010-2019年上海高考数学发展趋势研究.张京京.上海师范大学.2020-05-01
[5] 中考数学的解题方法探究.何应君.科技资讯.2020-04-23